

Multi-view Hypergraphbased Contrastive Learning Model for Cold-Start Micro-video Recommendation

Authors: Sisuo LYU, Xiuze ZHOU, Xuming HU Affiliation: The Hong Kong University of Science and Technology (Guangzhou)

- 1. Introduction
- 2. Proposed Method
- 3. Experiments
- 4. Conclusion

INTRODUCTION

RESEARCH BACKGROUND:

- Rapid Growth of micro-video platforms (TikTok, Kwai) driving demand for personalized recommendations
- 2. Rich Multi-modal Features in micro-videos:
 - Textual metadata (titles, descriptions)
 - Visual elements (cover images)
 - Dynamic video content
- 3. User Engagement heavily influenced by these diverse features
- 4. Unique Challenges compared to traditional content recommendation

CHALLENGES:

- 1. Over-smoothing Problem
- 2. Long-tail Distribution
- 3. Cold-start Scenarios
- 4. Information Underutilization

INTRODUCTION

OUR MOTIVATION:

1. Beyond Traditional Graphs:

Need richer structures to capture higher-order relationships

2. Multi-view Learning:

Different perspectives provide complementary information

3. Self-supervised Signals:

Additional supervision can compensate for sparse interactions

4. Cold-start Focus:

Improving recommendations for new/rarely viewed content benefits both creators and viewers

MHCR:

MULTI-VIEW FEATURE EXTRACTION:

- 1. User-Item Graph:
 - Captures direct interaction patterns
 - Formula:

$$E_{ui}^{(l)} = \sum_{i \in N_u} \frac{1}{\sqrt{|N_u| \cdot |N_i|}} E_{ui}^{(l-1)},$$

- Aggregates high-order collaborative signals
- 2. Item-Item Graph:
 - Models relationships between items
 - Modality-specific correlations
 - Affinity calculation:

$$s_{a,b}^{m} = \frac{(e_{a}^{m})^{\mathrm{T}} \cdot e_{b}^{m}}{\|e_{a}^{m}\| \|e_{b}^{m}\|}$$

KNN sparsification for efficiency

THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY (GUANGZHOU

HYPERGRAPH MODULE:

- 1. Beyond Pairwise Relationships:
 - Hyperedges connect multiple nodes simultaneously
 - Captures complex interaction patterns
- 2. Learnable Hyperedge Embeddings:

•
$$H_i^m = E_i^m \cdot V_m^{\mathsf{T}}$$

•
$$H_u^m = X_u \cdot (H_i^m)^{\top}$$

- 3. Global Information Transfer:
 - 1. Message passing via hyperedges
 - 2. Facilitates information flow between disparate nodes

SELF-SUPERVISED LEARNING:

- 1. Cross-modal Hypergraph Contrastive Learning:
 - 1. Ensures effective fusion across modalities
 - 2. Pulls same entities closer in different modality spaces
 - 3. Loss function:

$$L_{hc} = \sum_{x \in U \cup I} -\log \frac{\sum_{m} \exp\left(\frac{s(E_x^{m,H}, E_x^{m',H})}{\tau}\right)}{\sum_{x' \in U \cup I} \sum_{m} \exp\left(\frac{s(E_x^{m,H}, E_x^{t,H})}{\tau}\right)},$$

- 2. Graph-Hypergraph Contrastive Learning:
 - 1. Aligns representations from different structural views
 - 2. Enhances consistency between graph and hypergraph embeddings
 - 3. Loss function:

$$L_{ghc} = \sum \left(-\log \frac{\exp\left(\frac{s(E^G, E^H)}{\tau}\right)}{\exp\left(\frac{s(E^G, E^H)}{\tau}\right) + \sum \exp\left(\frac{s(E^G, E^H)}{\tau}\right)} \right)$$

THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY (GUANGZHOU)

DATASETS:

- 1. MicroLens-50K: 50,000 users, 19,220 items, 359,708 interactions
- 2. MicroLens-100K: 100,000 users, 19,738 items, 719,405 interactions

EVALUATION METRICS:

- Recall@n (n ∈ {10, 20})
- 2. NDCG@n (n \in {10, 20})

BASELINES:

- 1. General: YouTube, VBPR
- 2. Graph-based: LightGCN, LayerGCN
- 3. Multimodal: MMGCN, GRCN, BM3, Freedom, MGCN

OVERALL PERFORMANCE RESULTS:

TABLE I
PERFORMANCE METRICS OF DIFFERENT MODELS ON TWO MICROLENS DATASETS

Dataset	Metric	YouTube	VBPR	MMGCN	LightGCN	GRCN	LayerGCN	BM3	Freedom	MGCN	MHCR
MicroLens-50K	R@10	0.0375	0.0544	0.0403	0.0365	0.0631	0.0627	0.0565	0.0656	0.0708	0.0736
	R@20	0.0632	0.0888	0.067	0.0534	0.0982	0.0994	0.0918	0.1028	0.1089	0.1102
	N@10	0.0178	0.0273	0.0197	0.0284	0.0328	0.032	0.0281	0.0334	0.0363	0.0383
	N@20	0.0245	0.0361	0.0264	0.0345	0.0415	0.0414	0.0372	0.0429	0.0459	0.0477
MicroLens-100K	R@10	0.0392	0.0624	0.0405	0.0388	0.0682	0.0730	0.0601	0.0654	0.0717	0.0798
	R@20	0.0648	0.1002	0.0678	0.056	0.1057	0.1120	0.0975	0.1016	0.1096	0.1187
	N@10	0.0188	0.0314	0.0202	0.0306	0.0353	0.0382	0.0305	0.0337	0.0371	0.042
	N@20	0.0252	0.0410	0.0271	0.0367	0.0448	0.0480	0.0401	0.0431	0.0467	0.0519

MICROLENS-50K IMPROVEMENTS:

- Recall@10: 0.0736 (+3.96% vs MGCN)
- NDCG@10: 0.0383 (+5.51% vs MGCN)

MICROLENS-100K IMPROVEMENTS:

- Recall@10: 0.0798 (+11.30% vs MGCN)
- NDCG@10: 0.0420 (+13.19% vs MGCN)

COLD-START PERFORMANCE:

TABLE II
PERFORMANCE COMPARISON OF DIFFERENT MODELS FOR COLD-START USERS ON TWO MICROLENS DATASETS

Dataset	Metric	GRCN	LayerGCN	BM3	Freedom	MGCN	MHCR
	R@10	0.0521	0.0527	0.0471	0.053	0.0588	0.0616
M: T 5017	R@20	0.081	0.0826	0.0789	0.0839	0.0912	0.0937
MicroLens-50K	N@10	0.0267	0.0267	0.0237	0.0267	0.0299	0.0321
	N@20	0.034	0.0341	0.0316	0.0344	0.038	0.0396
	R@10	0.0562	0.0588	0.0485	0.0544	0.0605	0.0655
100 T 100T	R@20	0.0874	0.092	0.0807	0.0882	0.0937	0.0984
MicroLens-100K	N@10	0.0288	0.0299	0.024	0.0275	0.0311	0.0342
	N@20	0.0366	0.0384	0.0321	0.0359	0.0396	0.0423

MICROLENS-50K IMPROVEMENTS:

Recall@10: 0.0616 (+4.8% vs MGCN)

NDCG@10: 0.0321 (+7.3% vs MGCN)

MICROLENS-100K IMPROVEMENTS:

Recall@20: 0.0984 (+5.0% vs MGCN)

• NDCG@20: 0.0423 (+6.8% vs MGCN)

THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY (GUANGZHOU

COMPONENT CONTRIBUTIONS:

PARAMETER SENSITIVITY:

CONCLUSION

KEY CONTRIBUTIONS:

- 1. Novel integration of hypergraphs with contrastive learning
- 2. Multi-view feature extraction enhances representation quality
- 3. Significant performance gains, especially in cold-start scenarios

BROADER IMPACT:

- 1. Framework applicable to other recommendation domains
- 2. Helps address content discovery challenges for new creators
- 3. Enhances user experience with more diverse recommendations

FUTURE DIRECTIONS:

- 1. Dynamic hypergraph construction
- 2. Temporal modeling of evolving user interests

THANK YOU!